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Introduction 
 
Dear PION-competitor,

After a good cup of coffee or tea, an informative lecture and a filling lunch, it is time for the reason why you 
are here; the excercises. We would like to presente the problems of PION 2014! With thanks to a lot of profes-
sors we have made a set of problems wich combine many parts of the physical world surrounding you. These 
excercises will be more chalenging than any exam you have ever made.  Before you start with the olympiad 
we would like to wish you all the luck and we hope you have a great day! Show us why your team consists of 
ChamPIONs in Physics and should participate in PLANCKS this year!

Good luck!

Martijn Nagtegaal, Emma Gründeman, Tjeerd van Aalst, Matthijs Doelman, Thijs van de Mortel en Jordi 
Wassenburg

Pioncommissie 2014

Content

•	 There will be 11 problems

•	 Not every problem is worth the same number of points. The maximum of points that you can get 

per problem can be seen on the next page.

•	 A total of 110 points can be earned, 20 extra points for master parts

•	 You have 3 hours to work on the problems

•	 Every problem should be made on a separate sheet

•	 Write your team name and the name of the problem on each sheet

Rules

•	 Only BINAS is allowed to use as a reference

•	 It is forbidden to communicate with any one but your teammates and the PION committee

•	 It is forbidden to use a graphic calculator with more features than a TI-84 or equivalent calculator

On the cover

The picture on the cover shows an artist impression of a collision in the particle detectors used by CERN. 

Source: AFP/Getty Images.
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Distribution of points

The 110 points are distributed as follows:

Bycicle Physics            8

Magnetic Monopole            11

Formation of a rainbow           12

Draining a barrel            9

A precarious equilibrium           9

Filtering by many identical systems          12

Bouncing Battery            9

Temperature in a finite system          13

Space Mirrors             8

Shapiro Spikes            10

Cooperative binding in biological systems          9

IMPORTANT: Each master part is worth an additional 5 points, for a total of 20 extra points. 
The master teams can get a total of 130 points. 

For direct questions while making the exercises, please call Jordi: 06-19580663
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Bycicle Physics

The back rear wheel of a bike is driven by a chain and a gearbox. In this problem, we will take a look at 
the physics behind the movement of a bicycle. A person riding a bike has to provide a certain amount 
of muscular power to retain a steady frequency of the circulation of the pedals. We will consider two 
situations.  One is a biker riding uphill with speed: v = 15 km/h, the other is a biker riding on a flat 
road with speed: v = 40 km/h. Both bikers supply the same power: P = 400 W. They also have the same 
frequency of circulation of the pedals: f = 60 rev/min.

a) Using a calculation, explain why a biker will notice the difference between these situations 
 immediately.

b) Can you think of a mechanism to power the bike that would reduce this difference?
 
Imagine you are accelerating on a bike in a frictionless environment. Obviously, a force is needed 
to cause this acceleration. We call the force that the road exercises on the rear wheel of the bike F.

c) Which of the following statements about F is correct?  
 F < ma, F = ma, F > ma, in which m is the total combined mass of the  bike and the cyclist and 
 a is the resulting acceleration. Give an explanation for your answer.

d) Suppose a cyclist falls when his/her speed drops below 0.1m/s. Consider the following two 
 situations:

 1. A cyclist (total mass 80kg) is biking up a hill (angle with the horizontal 0.25 rad = 14.4 deg) 
 with a speed v=2m/s along the slope. Assume gravity is the dominant force. Determine 
 how far the cyclist will ride on before falling after he/she stops pedalling. 

 2. The same cyclist is now biking on a flat road, still providing the same power only at a 
 speed of 43.2 km/h. Assume the dominant force is the wind resistance, proportional to the 
 speed squared. How far will the cyclist travel after he/she stops pedalling this time?

Prof. dr. W. J. van der Zande (RU Nijmegen)
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Magnetic monopole

Up to today real magnetic monopoles have not been found. However, a theoretical magnetic mono-
pole can be constructed by considering a thin long, current carrying, solenoid with one of its ends 
at the origin and the other end stretching to infinity, in this limit only the (mono)pole at the origin 
contributes to the magnetic field that can be described by:

with qm is the magnetic charge of the monopole, and      the unit vector in the     direction.

In this problem we consider the motion of an electron (mass m, electric charge qe) moving in the field 
of a magnetic monopole (of which the magnetic field is given by the equation above) that is stationary 
at the origin.

a) Give an expression for the acceleration    of the electron in terms of qe , qm, m and the po-
 sition and velocity of the electron (�r  and    , respectively).

b) Show that the kinetic energy of the electron,  is a constant of motion.

c)  The angular momentum of the electron is given by . Show that 
∣

∣

∣

�L

∣

∣

∣

2 is also a 
 constant of motion.

d) Now consider the vector first introduced by Henri Poincaré in 1896, 

 

 
 and show that this vector is a third constant of motion.
 Choose a new coordinate system such that the Poincaré vector points in the positive z-direc-
 tion and the origin is at the position of the monopole. Work in spherical coordinates.

e) Proof that in this coordinate system θ = θP (the angle with the positive z-axis) is a constant of 
 motion (Hint: Calculate ). Show that this constant angle θP is given by (Hint: Calculate 
 ).

 What does this result imply for the motion of the electron?

�B =
µ0

4π

qm

r2
r̂

r̂ =
�r

r
�r

�v

−→
a

T =
1

2
m |�v|2

�L = m(�r × �v)

�P

�P = �L−

µ0qeqm

4π
r̂

�P · ϕ̂
�P · r̂

cos θp = −

µ0qeqm

4π
∣

∣

∣

�P
∣

∣

∣
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-- Master Part --

f) Show that for the radial coordinate of the trajectory of the electron in the field of the mono- 
 pole the following inequality holds.

 Derive and solve the equation of motion of r (r as a function of t) and speculate on the trajec-
 tories followed by electrons in the field of a magnetic monopole.

 

r ≥ rm =

∣

∣

∣

�L

∣

∣

∣

√
2mT

dr. E.R. van der Graaf (RUG)
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The formation of a rainbow in the sky can be understood as a reflection of the sun rays within a wa-
ter droplet. A ray of monochromatic light, part of a white light beam, enters into a spherical drop 
of refractive index n and undergoes inside the droplet multiple refraction/reflection (see figure 1).

Figure 1: Schematic gure of the trajectory of a sun ray in a spherical water droplet

a) What is the deviation D of the incident beam as a function of the angle of incidence i and of
 the first refracted angle ?

b) Find the value of sin i , as a function of n, for which the deviation of the incident beam is
 minimal.

c) Calculate numerically  α =π - D for a droplet of water (n = 1.33) and for a glass droplet (n=1.31).

d) We assumed that the variation of the refractive index n of water to the wavelength λ0 in 
 vacuum satises the Cauchy’s law, i.e.:

 n0 and C two positive constants. What is this phenomenon named?

e) We know that the intensity out of the drop is maximum for the minimum deviation; 
 acknowledging Cauchy’s Law, explain the formation of the rainbow in the sky when
 the light is white and the position of the colours.

f) Why does the rainbow look like a bow?

g) Let’s suppose the sun to be setting (i.e. at the West, where are on Earth), with a 10˚ inclination 
 above the horizon. A curtain of rain far away is pouring. Where should you be standing to see 
 a rainbow.

Formation of a rainbow

Eye
Spherical water

droplet

Sun

i

Dα

n = n0 +
C

λ2

0
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h) According to the Irish folk’s tradition, a Leprechaun (kind of fairy) has hidden his pot of gold 
 at the end of the rainbow. Can you reach it and become rich (by stealing it if you have no 
 morality)? Why?

-- Master Part --

It happens sometimes that a second rainbow is visible at the same time along with the one
described in the first part.

i) Explain the origin of this second rainbow. Where will it be compared to the original one? 
 How does it look? Why do we say “sometimes”?

j) Calculate  β = π - D2 with D2 the new deviation angle for this second rainbow. [Hint: make a  
 second drawing]

dr. A.J.L. Adam (TU Delft)
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Draining a barrel

A cylindrical barrel (diameter D1) is filled up to a height h0 with a Newto-
nian fluid. A small circular hole (diameter D2) is drilled in the bottom of the 
barrel and sealed with a small faucet. A rigid vertical hose (also diameter 
D2) of length L is attached to this faucet. At t=0 the faucet is opened and the 
force of gravity g starts to drain the barrel in a quasi-stationary fashion. The 
fluid is subject to forces of friction during the draining process,  resulting in 
an energy loss of efr=cLv2 per kg of fluid (where v is the speed of the fluid in 
the hose and c is a constant with dimension m-1). The barrel is completely 
empty at t=τ.

a) Find an expression for τ in terms of the quantities D1, D2,  h, L, g and c. 

b) Determine τ for L = 0 and L → ∞.

-- Master Part --

c) For which hose length L is the drain time τ minimal?
d) And what is this minimal drain time τ ?

prof. dr. ir. C. Kleijn (TU Delft)  
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Suppose we want to balance a long needle with its tip on a flat, hard surface. Of course the surface must 
not be slippery and the experiment will have to be carried out in a vibration-free room and at a very 
low temperature. It should be possible - we have thought of everything. Or have we?

Well not everything, one branch of physics holds out against the physicists...  quantum mechanics!

Assume the needle is a very thin (one-dimensional) rod with a homogenous mass distribution, length 
l and total mass m. Ideally, you would set the needle down at t=0 in a perfectly vertical position in such 
a way that both the initial angle with the vertical θ0 and the initial angular velocity ω0 are zero. Un-
fortunately, Heisenberg’s uncertainty principle prohibits this. Perform the following steps to estimate 
how well this equilibrium can be maintained:

a)  Determine the moment of inertia for the falling motion of the needle. Note: this falling motion 
 is a rotation about the tip of the needle, described by the angle θ between the needle and 
 the vertical.

b) Consider the falling motion of the needle from a classical perspective. Give the equations 
 of motion that describe the fall, and determine the solution θ(t) for small angles where  sin(θ) ≈ θ. 
 Use θ(0) = θ0 ≥ 0  and   .

Now the Heisenberg uncertainty principle dictates ΔqΔpq ≥ ħ/2, where Δq is the quantummechanical 
uncertainty in the generalized coordinate q and Δp is the uncertainty in the corresponding momen-
tum pq. How we should apply this quantum mechanical limit in this case isn’t easy to say, but for now 
let’s assume we can simply apply the principle to the initial situation by imposing θ(0)pθ(0) ≥ ħ/2.

c) Give, using this assumption, an estimate for the maximal time τmax it takes the needle to
 reach an angle θM=0.1 assuming the initial situation is as close the perfect  
 classical equilibrium (i.e.  θ0 = ω0 = 0) as possible. Use the data given below. 

d) The lowest temperature ever reached in laboratories is in the order of 0.1nK. Suppose 
 we could cool the needle to such a temperature. Is this enough to be able to 
 observe the quantum effect from part (c)? Use the classical principle of 
 equipartition of energy and apply this to the rotational degrees of freedom of the needle. 

A precarious equilibrium

θ̇(0)) = ω(0)

Precair evenwicht

Stel we willen een lange naald met de punt naar beneden op een vlakke, harde onder-

grond laten balanceren. De ondergrond mag natuurlijk niet te glad zijn om wegglijden te

voorkomen en het experiment dient in een trillingsvrije ruimte bij een zo laag mogelijke

temperatuur te worden uitgevoerd. We hebben aan alles gedacht. Echt alles?

Nee, één tak van de fysica blijft moedig weerstand bieden . . . de kwantummechanica!

Vat de naald bij benadering op als een zeer dun (1-dimensionaal) staafje met homogene

massaverdeling, lengte ℓ en totale massa m. Idealiter zou je de naald op tijdstip t = 0

zodanig met de punt naar beneden op de vlakke ondergrond willen zetten dat zowel de

initiële hoek θ0 met de verticale stand als de bijbehorende initiële hoeksnelheid ω0 nul

zijn. Echter, de onzekerheidsrelatie van Heisenberg laat dit niet toe. Doorloop nu de

volgende stappen om een schatting te maken voor de houdbaarheid van het evenwicht.

(a) Bepaal het traagheidsmoment van de naald behorende bij de valbeweging.

Let wel: de valbeweging is een rotatiebeweging rond de punt van de naald, beschreven

in termen van de hoek θ tussen de naald en de verticale stand.

(b) Beschouw de valbeweging van de naald als zijnde klassiek. Geef de bijbehorende

bewegingsvergelijking en bepaal de oplossing θ(t) voor kleine hoeken, zodat sin(θ)

mag worden benaderd door θ. Gebruik hierbij dat θ(0) = θ0 ≥ 0 en θ̇(0) = ω0.

De onzekerheidsrelatie van Heisenberg zegt nu dat ∆q∆pq ≥ h̄/2, waarbij ∆q de kwan-

tummechanische onzekerheid is in de gegeneraliseerde coördinaat q en ∆pq de onzekerheid

in de bijbehorende impuls pq. Hoe deze kwantummechanische restrictie precies moet wor-

den ingezet is niet zo eenvoudig te formuleren, maar neem aan dat we het simpelweg kunnen

loslaten op de beginsituatie op t = 0 door te eisen dat θ(0) pθ(0) ≥ h̄/2.

(c) Geef op basis hiervan een schatting voor de maximale tijd τmax die de naald erover

doet om de balansverstorende hellingshoek θM = 0.1 radialen te bereiken, uitgaande

van een beginsituatie die perfect klassiek evenwicht (d.w.z. θ0 = ω0 = 0) zo dicht

mogelijk benadert. De relevante numerieke input is onderaan deze opgave te vinden.

(d) De laagste temperaturen die we ooit in het laboratorium hebben kunnen realiseren

liggen in het 0.1 nK bereik. Neem aan dat we de naald tot zo’n temperatuur hebben

kunnen afkoelen. Is dat voldoende om het kwantumeffect uit onderdeel (c) te kunnen

waarnemen? Gebruik hiervoor het klassieke principe van equipartitie van energie en

pas dit toe op de rotationele vrijheidsgraad van de naald.

m = 0.01 kg , ℓ = 0.1m , g = gravitationele valversnelling = 9.81m s−2,

h̄ = 1.055× 10−34 kgm2 s−1 en k = 1.381× 10−23 kgm2 s−2K−1

Prof. dr. W.J.P. Beenakker (RU Nijmegen)
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Filtering by many identical  systems

A linear, time-invariant system has impulse response h(t), that is, when the input is x(t) = δ(t), the 
output is y(t) = h(t). The output of this system can then be used as the input for one or more identical 
systems as shown below.

a) Determine and sketch H(ω), the Fourier Transform of h(t). Your sketch should include labels 
 and numerical values where possible.

b) Determine and sketch y1(t) and y2(t) when x(t) = δ(t). Again, your sketch should include 
 labels and numerical values.

c) Sketch y3(t) and y100(t). You do not have to work out the analytical forms (unless you want 
 to). And, yes, that is N = 100.

d) Describe in words your result for N = 100. Be as precise as possible in your reasoning.

If we consider the class of signals that are everywhere non-negative, the center of a signal, yc, can be 
defined in the same way as the “center-of gravity”.  That is:

x(t) y1(t)
LTI
h(t)

y2(t) y3(t) yN–1(t) yN(t)
LTI
h(t)

LTI
h(t)

LTI
h(t)

PION 2014 Problem Statement 
 

Professor Ian T. Young 
 
(Total = 20 points) A linear, time-invariant system has impulse response h(t), that is, when the 
input is x(t) = δ(t), the output is y(t) = h(t). The output of this system can then be used as the input 
for one or more identical systems as shown below. 
 

 
 

The impulse response is given by: 

 h(t) =
1
2 3

t ≤ 3

0 t > 3

⎧

⎨
⎪

⎩
⎪

  

The following Fourier Transform pair {x(t), X(ω)} may (or may not) be useful:  

 

X(ω ) = x(t)e− iωt dt
−∞

+∞

∫

x(t) = 1
2π

X(ω )eiωt dω
−∞

+∞

∫
  

where i2 = –1. 
 

a) (1 point) Determine and sketch H(ω), the Fourier Transform of h(t). Your sketch 
should include labels and numerical values where possible. 

b) (2 points) Determine and sketch y1(t) and y2(t) when x(t) = δ(t). Again, your sketch 
should include labels and numerical values. 

c) (2 points) Sketch y3(t) and y100(t). You do not have to work out the analytical forms 
(unless you want to). And, yes, that is N = 100. 

d) (3 points) Describe in words your result for N = 100. Be as precise as possible in your 
reasoning. 

If we consider the class of signals that are everywhere non-negative, the center of a signal, yc, can 
be defined in the same way as the “center-of gravity”.  That is: 

 yc =
ty(t)dt

−∞

+∞

∫

y(t)dt
−∞

+∞

∫
  

x(t) y
1
(t)  

LTI 
h(t)    

y
2
(t) y

3
(t) y

N–1
(t) y

N
(t)  

LTI 
h(t) 

 
LTI 
h(t) 

 
LTI 
h(t) 

yc =

∫
∞

−∞
ty(t)dt

∫
∞

−∞
y(t)dt
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The root-mean-square width of a signal, yrms, can be similarly defined as:

e) Determine yc and yrms for y1(t), y2(t) and the general case yN(t). Reduce your answers to the 
 simplest possible form.

The impulse response is now replaced by a new impulse response:

f) Determine and sketch the new H(ω), the Fourier Transform of the new h(t). Your sketch 
 should include labels and numerical values where possible.
g) Sketch y1(t) and y2(t) when x(t) = δ(t). Again, your sketch should include labels and 
 numerical values. You do not have to give the analytical form for either signal.
h)  Sketch y100(t). Again, you do not have to work out the analytical form (unless you want to). 
 And, once again, that is N = 100.

yrms =

√

∫

∞

−∞
(t− yc)2y(t)dt
∫

∞

−∞
y(t)dt)

h(t) =

{

cos(5πt) |t| ≤
√
3

0 |t| >
√
3

Prof. I.T. Young (TU Delft)
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Bouncing Battery

While cycling homewards my bicycle light broke off and landed so hard on the ground that the clip 
that holds the battery in place was completely crushed. The battery could now slide back and forth 
and make electrical contact on one side only. This led to the following question: Is it (theoretically) 
possible to make a light bulb glow by bouncing a battery between two contacts?

a) Argue whether this is possible and give an expression for the current in terms of x1(t). You 
 may assume that the battery contacts resemble parallel plate capacitors. Distinguish between 
 two cases.

b) Estimate the maximum power dissipated in a light bulb with resistance R = 5Ω when a 
 cylindrical battery with 1cm diameter is bounced back and forth 10 times a second across a 
 1mm gap. Assume that the battery is a 1.5V type with a protruding positive contact which 
 covers a quarter of the top surface of the battery and a negative contact covering half of the 
 bottom surface.

L

x

L-d

x

1

2

R

Prof. dr. ir. T.H. Oosterkamp (LU)
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Temperature in a finite system

In statistical physics, we usually deal with systems in the thermodynamic limit, i.e. where the particle 
number and volume are infinitely large. However, in some relevant situations, researchers would like 
to generalize concepts such as temperature and (thermodynamic) energy to finite systems. This is 
useful for simulations or in mesoscopic systems, where the number of degrees is large but does not 
tend to inifinity. In this problem we carefully analyze how temperature and energy can be evaluated 
for such systems.

In the microcanonical ensemble, the number of particles, volume and energy of a large system system 
are kept fixed. In this problem we analyze the temperature of such a system. A quick (and commonly 
used) estimate for the temperature is based on the equipartition theorem: the kinetic energy of the 
system is determined as the MkBT /2, where M is the number of degrees of freedom of the system.

Let’s consider a gas of point particles in a cubic volume L x L x L with periodic boundary conditions. 
The latter imply that a particle leaving the system through the right wall, enters again through the left 
wall.

a) Argue whether in that case the total momentum is conserved.

b) Suppose that in a computer simulation of this system, you can calculate the kinetic energy 
 at all times. What would be your estimate for the temperature at any time in terms of the 
 kinetic energy K of the system, using the equipartition theorem?

c) Now we want to check whether the simple argument given above is indeed correct. The 
 proper way to calculate the temperature is

 at constant volume and particle number. Here, S(E) = kB ln Ω(E), where  Ω(E) is the number of 
 states with eneregy E accessible to the system. This number is given by

 where p and q denote all momenta and positions of the particles in the system. Taking into  
 account the fact that the total momentumis conserved, this leads to

 Here, h is Planck’s constant; it occurs with exponent 3N–3 as a result of momentum 
 conservation. The factor N! accounts for the indistinguishability of the particles. Show that   
 can be written as

1

T
=

(

∂S

∂E

)

Ω =
∑

allstates

δ [E −H(p, q)]

Ω =
1

h3N−3N !

∫
δ [E −H(p, q)] d3N−3pd3Nq.
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 where ω(D) is the surface of a unit sphere in D dimensions. Show that from this it follows 
 that

 How does the difference between this expression and that found in (b) scale as a function
 of the particle number N?

d) Now suppose we can also perform (numerical or analytic) calculations for the total energy
 of a many-particle system in the canonical ensemble. In this ensemble, the expectation value 
 for the total energy is given as
 where the sum over i denotes a sum over all states, and the β= 1/(kBT) is fixed. The sumover 

 all states can be replaced by an integral over the energy:

 where g(E) is the density of states, given as

 Expand the quantity -β + S(E) around the E*, which is the energy at which this function 
 attains its maximum. Note that E* is the energy of the microcanonical ensemble. We shall see 
 that in the canonical ensemble, the energy deviates from this value, even if the temperature is 
 the same as for the microcanonical version. The expansion up to third order in the deviation 
 ΔE from E* reads:

 Show that

 

 Hint: expand the integrand to first order in ° to keep only Gaussians and powers of ΔE in the 
 integrals.

Ω =
(2m)(3N−3)/2ω(3N − 3)

2h3N−3N !

∫
[E − V (q)](3N−5)/2

d3Nq

1

kBT
=

3N − 5

2

〈

1

K

〉

.

〈E〉 =

∑
i Eie

−βEi

∑
i e

−βEi

∑
i

→

∫
g(E)dE,

g(E) = eS(E)/.

−βE + S(E)/kB = −βE∗ + S(E∗)/kB − α∆E2
− γ∆E3 + . . . .

�E� = E∗ −
3γ

4α2
.

kb
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e)  Show that

and

−2kBα =
3N − 5

4

[

(3N − 7)

〈

1

K2

〉

− (3N − 5)

〈

1

K

〉

2
]

,

−6kBγ =
(3N − 5)(3N − 7)(3N − 9)

8

〈

1

K3

〉

−3
(3N − 5)2(3N − 7)

8

〈

1

K2

〉〈

1

K

〉

+
(3N − 5)3

4

〈

1

K

〉3

.

dr. J. Thijssen (TU Delft)
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Space Mirrors

During one of the missions of the USS Enterprise in deep space, far away from any massive objects, 
captain Kirk asks his crew to conduct an experiment. At time t=0, two identical mirrors are sent into 
space. One of the mirrors, mirror A, is sent in the positive x-direction, the other one, mirror B, is sent 
in the negative x-direction. Both mirrors have the same velocity V/c = 4/5.

After a certain amount of time T, the crew in the ship fires a laser pulse towards mirror A. The fre-
quency of the light is, according to the crew, f0. At mirror A, the pulse is reflected and propagates back 
into the direction of mirror B. After some time, the pulse will reflect from mirror B and find its way 
back to the USS Enterprise, where it is detected. Captain Kirk would like to know at what time the USS 
Enterprise will detect the pulse and what frequency the pulse then has.

a) Calculate the time of the detection and the frequency of the pulse for captain Kirk.

Moreover, captain Kirk has sent a port of his crew with each mirror. He wants them to measure the 
time of arrival and the frequency of the light that hits their respective mirrors.

b) For both mirrors, calculate the time of arrival of the pulse and the frequencies of the light.

Prof. dr. R.F.  Mudde (TU Delft)
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When two superconductors (S) are separated by a thin insulating (I) layer (a socalled SIS junction) 
a “supercurrent” can tunnel from one superconductor to the other in the absence of an applied bias 
voltage. This supercurrent Is consists of pairs of electrons, the Cooper pairs, which are described by a 
common macroscopic wavefunction . The current Is is a periodic function of the 
phase difference  of the wavefunctions in the two superconducting layers:

This equation represents the dc Josephson effect, named after its discoverer B.D. Josephson. When 
a dc voltage V is applied across the junction the phase difference becomes time-dependent and 
changes as

In this problem we consider the situation in which a voltage V(t) is applied across the junction that 
contains both a dc and an ac component:

a) Show that the (time-dependent) supercurrent for the applied voltage V(t) is given by

b) Use the substitutions:

 and the expansion into Bessel functions Jk(z):

 

Shapiro spikes

Is = Ic sin(φ)

ψ(�r) = |ψ(�r)| eiθ(�r)

φ ≡ θ1 − θ2

dφ

dt
=

2eV

�

V (t) = V0 + V1 cos(ωt)

Is(t) = Ic Im

[

exp

(

i(φ0 +
2e

�
V0t+

2eV1

�ω
sin(ωt)

)]
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When two superconductors (S) are separated by a thin insulating (I) layer (a so-
called SIS junction) a ”supercurrent” can tunnel from one superconductor to the
other in the absence of an applied bias voltage. This supercurrent Is consists of
pairs of electrons, the Cooper pairs, which are described by a common macroscopic
wavefunction ψ(�r) = |ψ(�r)| eiθ(�r). The current Is is a periodic function of the phase
difference φ ≡ θ1 − θ2 of the wavefunctions in the two superconducting layers:

Is = Ic sin(φ). (1)

Eq. (1) represents the dc Josephson effect, named after its discoverer B.D. Josephson.
When a dc voltage V is applied across the junction the phase difference ∆φ becomes
time-dependent and changes as

dφ

dt
=

2eV

h̄
. (2)

In this problem we consider the situation in which a voltage V (t) is applied across
the junction that contains both a dc and an ac component:

V (t) = V0 + V1 cos(ωt) (3)

(a) Show that the (time-dependent) supercurrent for the applied voltage V (t) [Eq. (3)]
is given by

Is(t) = Ic Im

[
exp

(
i(φ0 +

2e

h̄
V0t+

2eV1

h̄ω
sin(ωt)

)]
(4)

(b) Use the substitutions:

ωj ≡ 2e

h̄
V0

z ≡ 2eV1

h̄ω
(5)

α ≡ ωt

and the expansion into Bessel functions Jk(z):

eiz sin(α) =
∞∑

k=−∞

Jk(z) cos(kα) + i
∞∑

k=−∞

Jk(z) sin(kα) (6)
e
iz sin(α) =

∞∑

k=−∞

Jk(z) cos(kα) + i

∞∑

k=−∞

Jk(z) sin(kα)
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to rewrite the supercurrent Is(t) in the form:

Give expressions for f(k) and x.

Hint: Bessel functions obey the parity relation Jk(z) = (-1)k J-k(z).

c)  We now add the shunt current V0/R so that the total current I through the junction becomes

with Is(t) given in b). Use reverse substitution to express Is(t) again in terms of V0, V1 and ω. What is 
the dc part of the current? What do you think is meant by “Shapiro spikes”? Motivate your answer. 
Also make a (qualitative) sketch of the dc component of the current I(t) as a function of voltage V0.

-- Master Part --

We now consider small deviations of the voltages around the Shapiro spikes found under (c). Derive 
an expression for the resulting supercurrent Is(t) for and describe how it behaves.

Is(t) = Ic

∞∑

k=−∞

f(k) sin(φ0 + ωjt+ x)

I(t) = Is(t) +
V0

R

φ0 = π/2

dr. M. Blaauboer (TU Delft)
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In biology, many proteins are designed to bind a small molecule called a ligand. We can think of 
these proteins as existing in one of two states, bound or unbound. Furthermore, identical proteins are 
sometimes found assembled into larger complexes that exhibit what is called cooperative binding. In 
cooperative binding, the proteins in a complex prefer to be either all bound or all unbound. Here we 
will develop a simple model of this phenomenon.

 a) Consider a protein complex made of N=4 individual proteins arranged in a ring, as shown 
 in the figure above. Let bi = 1,0 represent whether the ith protein is bound or unbound 
 to a ligand, respectively. The change in energy associated with binding of one additional 
 ligand is -µ. Additionally, there is an interaction energy between neighboring proteins 
 denoted by ε where ε>0. Two neighboring proteins in the same state contribute an 
 energy –ε, while two neighboring proteins in opposite states contribute an energy ε.
 Because of the ring configuration, proteins 1 and 4 are neighboring each other. As an 
 example, the energy of the five configurations shown in the figure above would be 
 (from left to right):

 Write the partition function of this system, in terms of ε, µ, and the Boltzmann factor β

 b) Let’s first set µ = 0. What is the average number of ligands bound to the protein complex? What 
 is the probability that exactly this average number of ligands is bound to the complex? What is 
 the asymptotic value of this probability as the interaction energy ε becomes large? Write all 
 answers in terms of in terms of ε, µ, and β.

 c) Now consider the limit that, which occurs when the ligand becomes dilute. What is 
 the average energy of the complex? What is the probability that any ligands are bound to the 
 complex? What is the asymptotic value of this probability as the interaction energy ε becomes 
 large? Write all answers in terms of in terms of ε, µ, and β.

 

Cooperative binding in biological systems

Figure 1: A four-protein complex (green) can bind up to four small ligand molecules (red)

−4ǫ,−µ,−2µ,−3µ, and− 4ǫ− 4µ

β =
1

kBT

µβ ≪ 0
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 d) Returning again to the case where µ=0, write a generalized partition function for N proteins 
 in a ring complex where N is even. Write the partition function of this system in terms 
 of ε, β,  and the hyperbolic functions (cosh, tanh, etc.). Write your answer in 
 a compact form, i.e. do not leave your answer expressed as a summation.

The end

dr. E. Abbondanzieri (TU Delft)
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